Geant4 v9.4

Geometry |l

Joseph Perl (SLAC)
Presenting slides by Makoto Asai (SLAC)
Geant4 Tutorial Course

NATIONAL ACCELERATOR LABORATORY

Contents

* Physical volume

* Placement
 Parameterized volume
* Replicated volume

* Divided volume

« Touchable

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

NATIONAL ACCELERATOR LABORATORY

Geant4 v9.4

Physical volume

NATIONAL ACCELERATOR LABORATORY

Detector geometry

Three conceptual layers

— G4VSolid -- shape, size

— G4LogicalVolume -- daughter physical volumes,

material, sensitivity, user limits, etc.

— G4VPhysicalVolume -- position, rotation

G4VPhysicalVolume

I

G4PVPIacemenﬁ

G4VSolid —. G4LogicalVolume ~
G4Box G4Material G4VisAttributes
G4Tubs G4VSensitiveDetector

G4PVParameterisec

Define detector geometry

« Basic strategy
G4VSolid* pBoxSolid =
new G4Box (“aBoxSolid”, 1l.*m, 2.*m, 3.*m);
G4ALogicalVolume* pBoxLog =
new G4LogicalVolume (pBoxSolid, pBoxMaterial,
“aBoxLog”, 0, 0, 0);
G4VPhysicalVolume* aBoxPhys =
new G4PVPlacement(pRotation,
G4ThreeVector (posX, posY, posZ), pBoxLog,
“aBoxPhys”, pMotherLog, 0, copyNo);

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

Physical Volumes

 Placement volume : it is one positioned volume

— One physical volume object represents one “real” volume.
* Repeated volume : a volume placed many times

— One physical volume object represents any number of
“real” volumes.

— reduces use of memory.

— Parameterised
- repetition w.r.t. copy number placement
-~ Replica and Division
- simple repetition along one axis
- A mother volume can contain either
— many placement volumes

— or, one repeated volume

repeated

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

NATIONAL ACCELERATOR LABORATORY

Physical volume

« G4PVPlacement 1 Placement = One Placement Volume
— A volume instance positioned once in its mother volume
 G4PVParameterised 1 Parameterized = Many Repeated Volumes
— Parameterized by the copy number

* Shape, size, material, sensitivity, vis attributes, position and rotation can
be parameterized by the copy number.

* You have to implement a concrete class of G4VPVParameterisation.
— Reduction of memory consumption
— Currently: parameterization can be used only for volumes that either
a) have no further daughters, or
b) are identical in size & shape (so that grand-daughters are safely fit inside).

— By implementing G4PVNestedParameterisation instead of
G4VPVParameterisation, material, sensitivity and vis attributes can be
parameterized by the copy numbers of ancestors.

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

Physical volume

G4PVReplica 1 Replica = Many Repeated Volumes

— Daughters of same shape are aligned along one axis

— Daughters fill the mother completely without gap in between.
G4PVDivision 1 Division = Many Repeated Volumes

— Daughters of same shape are aligned along one axis and fill the mother.
— There can be gaps between mother wall and outmost daughters.
— No gap in between daughters.

G4ReflectionFactory 1 Placement = a pair of Placement volumes
— generating placements of a volume and its reflected volume

— Useful typically for end-cap calorimeter

G4AssemblyVolume 1 Placement = a set of Placement volumes
— Position a group of volumes

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

Geant4 v9.4

G4PVPlacement

NATIONAL ACCELERATOR LABORATORY

G4PVPlacement

G4PVPlacement (
G4Transform3D (G4RotationMatrix &pRot, // rotation of daughter volume

const G4ThreeVector &tlate), // position in mother frame
G4LogicalVolume *pDaughterlogical,
const G4String &pName,
G4LogicalVolume *pMotherLogical,
G4bool pMany, // ‘true’ is not supported yet..
G4int pCopyNo, // unique arbitrary integer
G4bool pSurfChk=false); // optional boundary check
« Single volume positioned relatively to the mother volume.

Mother volume A

G4PVPlacement

G4PVPlacement (
G4Transform3D (G4RotationMatrix &pRot, // rotation of daughter volume

const G4ThreeVector &tlate), // position in mother frame
G4LogicalVolume *pDaughterlogical,
const G4String &pName,
G4LogicalVolume *pMotherLogical,
G4bool pMany, // ‘true’ is not supported yet..
G4int pCopyNo, // unique arbitrary integer
G4bool pSurfChk=false); // optional boundary check
« Single volume positioned relatively to the mother volume.

Mother volume A

G4PVPlacement

G4PVPlacement (
G4Transform3D (G4RotationMatrix &pRot, // rotation of daughter volume

const G4ThreeVector &tlate), // position in mother frame
G4LogicalVolume *pDaughterlogical,
const G4String &pName,
G4LogicalVolume *pMotherLogical,
G4bool pMany, // ‘true’ is not supported yet..
G4int pCopyNo, // unique arbitrary integer
G4bool pSurfChk=false); // optional boundary check
« Single volume positioned relatively to the mother volume.

Mother volume A

rotationf

G4PVPlacement

G4PVPlacement (
G4Transform3D (G4RotationMatrix &pRot, // rotation of daughter volume

const G4ThreeVector &tlate), // position in mother frame
G4LogicalVolume *pDaughterlogical,
const G4String &pName,
G4LogicalVolume *pMotherLogical,
G4bool pMany, // ‘true’ is not supported yet..
G4int pCopyNo, // unique arbitrary integer
G4bool pSurfChk=false); // optional boundary check
« Single volume positioned relatively to the mother volume.

Mother volume A

rotationf

Alternative G4PVPlacement

G4PVPlacement (G4ARotationMatrix* pRot, // rotation of mother frame
const G4ThreeVector &tlate, // position in mother frame
G4LogicalVolume *pDaughterlogical,
const G4String &pName,

G4LogicalVolume *pMotherLogical,

G4bool pMany, // ‘true’ is not supported yet..

G4int pCopyNo, // unique arbitrary integer

G4bool pSurfChk=false); // optional boundary check
« Single volume positioned relatively to the mother volume.

Mother volume A

(g |
aud

(=

NATIONAL ACCELERATOR LABORATORY

Alternative G4PVPlacement

G4PVPlacement (G4ARotationMatrix* pRot, // rotation of mother frame
const G4ThreeVector &tlate, // position in mother frame
G4LogicalVolume *pDaughterlogical,
const G4String &pName,

G4LogicalVolume *pMotherLogical,

G4bool pMany, // ‘true’ is not supported yet..

G4int pCopyNo, // unique arbitrary integer

G4bool pSurfChk=false); // optional boundary check
« Single volume positioned relatively to the mother volume.

Mother volume A

(g |
aud

(=

NATIONAL ACCELERATOR LABORATORY

11

Alternative G4PVPlacement

G4PVPlacement (G4RotationMatrix* pRot, // rotation of mother frame

const G4ThreeVector &tlate, // position in mother frame

G4LogicalVolume *pDaughterlogical,

const G4String &pName,

G4LogicalVolume *pMotherLogical,

G4bool pMany, // ‘true’ is not supported yet..

G4int pCopyNo, // unique arbitrary integer

G4bool pSurfChk=false); // optional boundary check
« Single volume positioned relatively to the mother volume.

Mother volume b A

rransiation '
mo\’_\’\er ‘:‘:,a.‘:q‘e' o

rotation k

L]

L]
— - o 1 1
NATIONAL ACCELERATOR LABORATORY

Alternative G4PVPlacement

G4PVPlacement (G4RotationMatrix* pRot, // rotation of mother frame

const G4ThreeVector &tlate, // position in mother frame

G4LogicalVolume *pDaughterlogical,

const G4String &pName,

G4LogicalVolume *pMotherLogical,

G4bool pMany, // ‘true’ is not supported yet..

G4int pCopyNo, // unique arbitrary integer

G4bool pSurfChk=false); // optional boundary check
« Single volume positioned relatively to the mother volume.

Mother volume b A

rransiation '
mo\’_\’\er ‘:‘:,a.‘:q‘e' .

rotation k

L]

L]
— - o 1 1
NATIONAL ACCELERATOR LABORATORY

Alternative G4PVPlacement

G4PVPlacement (G4ARotationMatrix* pRot, // rotation of mother frame
const G4ThreeVector &tlate, // position in mother frame
G4LogicalVolume *pDaughterlogical,
const G4String &pName,

G4LogicalVolume *pMotherLogical,
G4bool pMany, // ‘true’ is not supported yet..

Note:
» This G4PVPlacement is identical to the previous one if there is no rotation.
* Previous one is much easier to understand.
» The advantage of this second constructor is setting the pointer of the rotation
matrix rather than providing the values of the matrix.
* You may change the matrix without accessing to the physical volume.

» This is for power-users, though.

(N

NATIONAL ACCELERATOR LABORATORY

Geant4 v9.4

Parameterized volume

NATIONAL ACCELERATOR LABORATORY

G4PVParameterised

G4APVParameterised (const G4Stringé& pName,
G4LogicalVolume* pLogical,
G4LogicalVolume* pMother,
const EAxis pAxis,
const G4int nReplicas,

GAVPVParameterisation* pParam
G4bool pSurfChk=false) ;

* Replicates the volume nReplicas times using the parameterization
pParam, within the mother volume pMother

pAxis is a “suggestion” to the navigator along which Cartesian axis

replication of parameterized volumes dominates.
kXAXxis, KYAxis, kZAxis : one-dimensional optimization

kUndefined : three-dimensional optimization

Parameterized Physical Volumes

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

Parameterized Physical Volumes

Parameterized Physical Volumes

User should implement a class derived from G4VPVParameterisation abstract
base class and define following as a function of copy number

— where it is positioned (transformation, rotation)

Parameterized Physical Volumes

User should implement a class derived from G4VPVParameterisation abstract
base class and define following as a function of copy number

— where it is positioned (transformation, rotation)

Parameterized Physical Volumes

User should implement a class derived from G4VPVParameterisation abstract
base class and define following as a function of copy number

— where it is positioned (transformation, rotation)
Optional:

— the size of the solid (dimensions)

Parameterized Physical Volumes

User should implement a class derived from G4VPVParameterisation abstract
base class and define following as a function of copy number

— where it is positioned (transformation, rotation)
Optional:

— the size of the solid (dimensions)

Parameterized Physical Volumes

User should implement a class derived from G4VPVParameterisation abstract
base class and define following as a function of copy number

— where it is positioned (transformation, rotation)
Optional:

— the size of the solid (dimensions)
— the type of the solid, material, sensitivity, vis attributes

Parameterized Physical Volumes

User should implement a class derived from G4VPVParameterisation abstract

base class and define following as a function of copy number
— where it is positioned (transformation, rotation)
Optional:

— the size of the solid (dimensions)
— the type of the solid, material, sensitivity, vis attributes

L]

Parameterized Physical Volumes

User should implement a class derived from G4VPVParameterisation abstract

base class and define following as a function of copy number
— where it is positioned (transformation, rotation)

Optional:

— the size of the solid (dimensions)

— the type of the solid, material, sensitivity, vis attributes
All daughters must be fully contained in the mother.
Daughters should not overlap to each other.

L]

Parameterized Physical Volumes

User should implement a class derived from G4VPVParameterisation abstract

base class and define following as a function of copy number
— where it is positioned (transformation, rotation)
Optional:

— the size of the solid (dimensions)

— the type of the solid, material, sensitivity, vis attributes
All daughters must be fully contained in the mother.
Daughters should not overlap to each other.

Limitations:
— Applies to simple CSG solids only

L]

— Granddaughter volumes allowed only for special cases
— Consider parameterised volumes as “leaf” volumes

Parameterized Physical Volumes

User should implement a class derived from G4VPVParameterisation abstract

base class and define following as a function of copy number
— where it is positioned (transformation, rotation)
Optional:

— the size of the solid (dimensions)

— the type of the solid, material, sensitivity, vis attributes
All daughters must be fully contained in the mother.
Daughters should not overlap to each other.

Limitations:

L]

— Applies to simple CSG solids only
— Granddaughter volumes allowed only for special cases
— Consider parameterised volumes as “leaf” volumes
Typical use-cases
— Complex detectors
 with large repetition of volumes, regular or irregular
— Medical applications

« the material in animal tissue is measured as cubes with varying

material

G4PVParameterized : example

G4VSolid* solidChamber =

new G4Box ("chamber", 100*cm, 100*cm, 10*cm) ;
G4LogicalVolume* logicChamber =

new G4LogicalVolume

(solidChamber, ChamberMater, "Chamber", 0, 0, 0);
G4AVPVParameterisation* chamberParam =

new ChamberParameterisation();
G4VPhysicalVolume* physChamber =

new G4PVParameterised ("Chamber", logicChamber,

logicMother, kZAxis, NbOfChambers, chamberParam) ;

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

NATIONAL ACCELERATOR LABORATORY

G4VPVParameterisation : example

class ChamberParameterisation : public G4VPVParameterisation
{
public:
ChamberParameterisation|() ;
virtual ~ChamberParameterisation() ;
virtual void ComputeTransformation // position, rotation
(const G4int copyNo, G4VPhysicalVolume* physVol) const;
virtual void ComputeDimensions // size
(G4ABox& trackerlayer, const G4int copyNo,
const G4VPhysicalVolume* physVol) const;
virtual G4VSolid* ComputeSolid // shape
(const G4int copyNo, G4VPhysicalVolume* physVol) ;
virtual G4Material* ComputeMaterial // material, sensitivity, visAtt
(const G4int copyNo, G4VPhysicalVolume* physVol,
const G4VTouchable *parentTouch=0) ;

// G4VTouchable should not be used for ordinary parameterization

};

NATIONAL ACCELERATOR LABORATORY

G4VPVParameterisation : example

void ChamberParameterisation: :ComputeTransformation
(const G4int copyNo, G4VPhysicalVolume* physVol) const

{
G4double Xposition = .. // w.r.t. copyNo

G4ThreeVector origin (Xposition,Y¥position,Zposition) ;
physVol->SetTranslation (origin) ;
physVol->SetRotation (0) ;

void ChamberParameterisation: :ComputeDimensions
(GABox& trackerChamber, const G4int copyNo,
const G4VPhysicalVolume* physVol) const
{
G4double Xhalflength = .. // w.r.t. copyNo
trackerChamber.SetXHalfLength (XhalfLength) ;
trackerChamber.SetYHalfLength (YhalfLength) ;
trackerChamber.SetZHalflLength (ZHalfLength) ;

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

NATIONAL ACCELERATOR LABORATORY

G4VPVParameterisation : example

G4VSolid* ChamberParameterisation: :ComputeSolid
(const G4int copyNo, G4VPhysicalVolume* physVol)

G4VSolid* solid;
if (copyNo == ..) solid = myBox;
else if (copyNo == ..) solid = myTubs;

return solid;

}

G4Material* ComputeMaterial // material, sensitivity, visAtt
(const G4int copyNo, G4VPhysicalVolume* physVol,

const G4VTouchable *parentTouch=0) ;
{

G4Material* mat;
if (copyNo == ..)
{

mat = materiall;

physVol->GetLogicalVolume () ->SetVisAttributes(attl) ;
}

return mat;

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

NATIONAL ACCELERATOR LABORATORY

Geant4 v9.4

Replicated volume

NATIONAL ACCELERATOR LABORATORY

The mother volume is completely filled with replicas, all of
which are the same size (width) and shape.
Replication may occur along:
Cartesian axes (X, Y, Z) — slices are considered a daughter

perpendicular to the axis of replication logical volume to
be replicated

Coordinate system at the center of each replica

Radial axis (Rho) — cons/tubs sections centered on the

origin and un-rotated

Coordinate system same as the mother

Phi axis (Phi) — phi sections or wedges, of cons/tubs

form

Coordinate system rotated such as that the X axis
bisects the angle made by each wedge

mother volume

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

The mother volume is completely filled with replicas, all of
which are the same size (width) and shape.
Replication may occur along:
Cartesian axes (X, Y, Z) — slices are considered a daughter

perpendicular to the axis of replication logical volume to
be replicated

Coordinate system at the center of each replica
Radial axis (Rho) — cons/tubs sections centered on the
origin and un-rotated

Coordinate system same as the mother
Phi axis (Phi) — phi sections or wedges, of cons/tubs
form

Coordinate system rotated such as that the X axis
bisects the angle made by each wedge

mother volume

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

G4PVReplica

G4PVReplica (const G4String &pName,
G4lLogicalVolume *plogical,
G4lLogicalVolume *pMother,
const EAxis pAxis,
const G4int nReplicas,
const G4double width,
const G4double offset=0.);

offset may be used only for tube/cone segment
Features and restrictions:
Replicas can be placed inside other replicas

Normal placement volumes can be placed inside replicas, assuming no
intersection/overlaps with the mother volume or with other replicas

No volume can be placed inside a radial replication

Parameterised volumes cannot be placed inside a replica

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

NATIONAL ACCELERATOR LABORATORY

Replica - axis, width, offset

 Cartesian axes - kXaxis, kYaxis, kZaxis +
— Center of n-th daughter is given as .
J J width
-width* (nReplicas-1) *0.5+n*width +
— Offset shall not be used

« Radial axis - kRaxis

— Center of n-th daughter is given as

width
width* (n+0.5) +offset

— Offset must be the inner radius

of the mother offset
* Phi axis - kPhi

— Center of n-th daughter is given as

width* (n+0.5) +offset

— Offset must be the starting angle of the mother
ﬁlﬁ%ﬁ&% SR LT T2l AT BARSEES J SHnacs vy

Replica - axis, width, offset

« Cartesian axes - kXaxis, kYaxis, kZaxis /' +

— Center of n-th daughter is given as

width
-width* (nReplicas-1) *0.5+n*width

— Offset shall not be used

« Radial axis - kRaxis

— Center of n-th daughter is given as

width
width* (n+0.5) +offset

— Offset must be the inner radius

of the mother offset
* Phi axis - kPhi

— Center of n-th daughter is given as

width* (n+0.5) +offset

— Offset must be the starting angle of the mother
ﬁu\cﬁgﬁw SR LT T2l AT BARSEES 0 SHUCS DY .7

G4PVReplica : example

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

G4PVReplica : example

G4PVReplica : example
G4double tube dPhi = 2.* M PI * rad;
G4VSolid* tube =

new G4Tubs ("tube",20*cm,50*cm,30*cm, 0., tube dPhi) ;
G4LogicalVolume * tube log =

new G4LogicalVolume (tube, Air, "tubel", 0, 0, 0);

G4VPhysicalVolume* tube phys =
new G4PVPlacement (0,G4ThreeVector (-200.*cm,0.,0.),
"tubeP", tube log, world phys, false, 0);

NATIONAL ACCELERATOR LABORATORY

G4PVReplica : example
G4double tube dPhi = 2.* M PI * rad;
G4VSolid* tube =

new G4Tubs ("tube",20*cm,50*cm,30*cm, 0., tube dPhi) ;
G4LogicalVolume * tube log =

new G4LogicalVolume (tube, Air, "tubel", 0, 0, 0);

G4VPhysicalVolume* tube phys =
new G4PVPlacement (0,G4ThreeVector (-200.*cm,0.,0.),
"tubeP", tube log, world phys, false, 0);
G4double divided tube dPhi tube dPhi/6.;
G4VSolid* div_ tube =
new G4Tubs ("div_tube", 20*cm, 50*cm, 30*cm,
-divided tube dPhi/2., divided tube dPhi);

G4LogicalVolume* div_tube log =
new G4LogicalVolume (div_tube,Pb,"div_tubelL",0,0,0);

NATIONAL ACCELERATOR LABORATORY

G4PVReplica : example
G4double tube dPhi = 2.* M PI * rad;
G4VSolid* tube =

new G4Tubs ("tube",20*cm,50*cm,30*cm, 0., tube dPhi) ;
G4LogicalVolume * tube log =

new G4LogicalVolume (tube, Air, "tubel", 0, 0, 0);

G4VPhysicalVolume* tube phys =
new G4PVPlacement (0,G4ThreeVector (-200.*cm,0.,0.),
"tubeP", tube log, world phys, false, 0);
G4double divided tube dPhi tube dPhi/6.;
G4VSolid* div_ tube =
new G4Tubs ("div_tube", 20*cm, 50*cm, 30*cm,
-divided tube dPhi/2., divided tube dPhi);

G4LogicalVolume* div_tube log =

new G4LogicalVolume (div_tube,Pb,"div_tubelL",0,0,0);
G4VPhysicalVolume* div_tube phys =

new G4PVReplica("div_tube phys", div_tube log,

tube log, kPhi, 6, divided tube dPhi);

NATIONAL ACCELERATOR LABORATORY

G4PVReplica : example
G4double tube dPhi = 2.* M PI * rad;
G4VSolid* tube =

new G4Tubs ("tube",20*cm,50*cm,30*cm, 0., tube dPhi) ;
G4LogicalVolume * tube log =

new G4LogicalVolume (tube, Air, "tubel", 0, 0, 0);

G4VPhysicalVolume* tube phys =
new G4PVPlacement (0,G4ThreeVector (-200.*cm,0.,0.), <::::

"tubeP", tube log, world phys, false, 0);
G4double divided tube dPhi tube dPhi/6.;
G4VSolid* div_ tube =
new G4Tubs ("div_tube", 20*cm, 50*cm, 30*cm,
-divided tube dPhi/2., divided tube dPhi);

G4LogicalVolume* div_tube log =

new G4LogicalVolume (div_tube,Pb,"div_tubelL",0,0,0);
G4VPhysicalVolume* div_tube phys =

new G4PVReplica("div_tube phys", div_tube log,

tube log, kPhi, 6, divided tube dPhi);

NATIONAL ACCELERATOR LABORATORY

Geant4 v9.4

Divided volume

NATIONAL ACCELERATOR LABORATORY

G4PVDivision

« (G4PVDivision is a special kind of G4PVParameterised.

— G4VPVParameterisation is automatically generated
according to the parameters given in G4PVDivision.

 G4PVDivision is similar to G4PVReplica but

— It currently allows gaps in between mother and daughter
volumes

— We are extending G4PVDivision to allow gaps between
daughters, and also gaps on side walls. We plan to
release this extension in near future.

« Shape of all daughter volumes must be same shape as the
mother volume

— G4VSolid (to be assigned to the daughter logical
volume) must be the same type, but different object.

 Replication must be aligned along one axis.

« If your geometry does not have gaps, use G4Replica.

— For identical geometry, navigation of G4Replica is mother volume

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

NATIONAL ACCELERATOR LABORATORY

G4PVDivision

« G4PVDivision is a special kind of G4PVParameterised.

— G4VPVParameterisation is automatically generated
according to the parameters given in G4PVDivision.

* G4PVDivision is similar to G4PVReplica but

— It currently allows gaps in between mother and daughter
volumes

— We are extending G4PVDivision to allow gaps between
daughters, and also gaps on side walls. We plan to
release this extension in near future.

« Shape of all daughter volumes must be same shape as the
mother volume

— G4VSolid (to be assigned to the daughter logical
volume) must be the same type, but different object.

 Replication must be aligned along one axis.

« If your geometry does not have gaps, use G4Replica.

— For identical geometry, navigation of G4Replica is mother volume

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

NATIONAL ACCELERATOR LABORATORY

G4PVDivision - 1

G4PVDivision(const G4String& pName,
G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical,
const EAXxis pAxis,
const G4int nDivisions, // number of division is given
const G4double offset);

* The size (width) of the daughter volume is calculated as
((size of mother) - offset) / nDivisions

nDivisions
*lllllllllllllllllllllllllllllllllll>

offset

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

G4PVDivision - 1

G4PVDivision(const G4String& pName,
G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical,
const EAXxis pAxis,
const G4int nDivisions, // number of division is given
const G4double offset);

* The size (width) of the daughter volume is calculated as
((size of mother) - offset) / nDivisions

offset

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

G4PVDivision - 2

G4PVDivision(const G4String& pName,
G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical,
const EAXxis pAxis,
const G4double width, // width of daughter volume is given
const G4double offset);

« The number of daughter volumes is calculated as
int(((size of mother) - offset) / width)

— As many daughters as width and offset allow

offset idty

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

G4PVDivision - 2

G4PVDivision(const G4String& pName,
G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical,
const EAXxis pAxis,
const G4double width, // width of daughter volume is given
const G4double offset);

« The number of daughter volumes is calculated as
int(((size of mother) - offset) / width)

— As many daughters as width and offset allow

offset > —

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

G4PVDivision - 2

G4PVDivision(const G4String& pName,
G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical,
const EAXxis pAxis,
const G4double width, // width of daughter volume is given
const G4double offset);

« The number of daughter volumes is calculated as
int(((size of mother) - offset) / width)

— As many daughters as width and offset allow

offset > —

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

G4PVDivision - 3

G4PVDivision(const G4String& pName,
G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical,
const EAXis pAxis,
const G4int nDivisions,
const G4double width, // both number of division and width are given
const G4double offset);

» nDivisions daughters of width thickness

mDivisions

offset idty

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

G4PVDivision - 3

G4PVDivision(const G4String& pName,
G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical,
const EAXis pAxis,
const G4int nDivisions,
const G4double width, // both number of division and width are given
const G4double offset);

» nDivisions daughters of width thickness

offset e

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

G4PVDivision

G4PVDivision currently supports following shapes / axes.

G4Box : kXAxis, kYAXxis, kZAxis
G4 Tubs : kRho, kPhi, kZAxis
G4Cons : kRho, kPhi, kZAxis
G4Trd : kXAxis, KYAXis, kZAxis
G4Para : kXAxis, kYAXxis, kZAxis
G4Polycone : kRho, kPhi, kZAxis

» kZAxis - the number of divisions has to be the same as solid sections,
(i.e. numZPlanes-1), the width will not be taken into account.

G4Polyhedra : kRho, kPhi, kZAxis

» kPhi - the number of divisions has to be the same as solid sides, (i.e.
numsSides), the width will not be taken into account.

» kZAxis - the number of divisions has to be the same as solid sections,
(i.e. numZPlanes-1), the width will not be taken into account.

In the case of division along kRho of G4Cons, G4Polycone, G4Polyhedra, if
width is provided, it is taken as the width at the -Z radius; the width at other radii
will be scaled to this one.

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

G4ReplicatedSlice

* New extension of G4Division introduced with version 9.4.
« It allows gaps in between divided volumes.
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAXis,
const G4int nDivisions, const G4double half _gap, const G4double offset);
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterlLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAxis,
const G4double width, const G4double half gap, const G4double offset);
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAxis,
const G4int nDivisions, const G4double width,
const G4double half gap, const G4double offset);

G4ReplicatedSlice

* New extension of G4Division introduced with version 9.4.
« It allows gaps in between divided volumes.
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAXis,
const G4int nDivisions, const G4double half _gap, const G4double offset);
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterlLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAxis,
const G4double width, const G4double half gap, const G4double offset);
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAxis,
const G4int nDivisions, const G4double width,
const G4double half gap, const G4double offset);

G4ReplicatedSlice

* New extension of G4Division introduced with version 9.4.
« It allows gaps in between divided volumes.
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAXis,
const G4int nDivisions, const G4double half _gap, const G4double offset);
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterlLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAxis,
const G4double width, const G4double half gap, const G4double offset);
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAxis,
const G4int nDivisions, const G4double width,

G4ReplicatedSlice

* New extension of G4Division introduced with version 9.4.
« It allows gaps in between divided volumes.
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAXis,
const G4int nDivisions, const G4double half _gap, const G4double offset);
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterlLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAxis,
const G4double width, const G4double half gap, const G4double offset);
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAxis,
const G4int nDivisions, const G4double width,

G4ReplicatedSlice

* New extension of G4Division introduced with version 9.4.
« It allows gaps in between divided volumes.
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAXis,
const G4int nDivisions, const G4double half _gap, const G4double offset);
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterlLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAxis,
const G4double width, const G4double half gap, const G4double offset);
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAxis,
const G4int nDivisions, const G4double width,

G4ReplicatedSlice

* New extension of G4Division introduced with version 9.4.
« It allows gaps in between divided volumes.
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAXis,
const G4int nDivisions, const G4double half _gap, const G4double offset);
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterlLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAxis,
const G4double width, const G4double half gap, const G4double offset);
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAxis,
const G4int nDivisions, const G4double width,
const G4double half gap, const G4double offset);

G4ReplicatedSlice

* New extension of G4Division introduced with version 9.4.
« It allows gaps in between divided volumes.
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAXis,
const G4int nDivisions, const G4double half _gap, const G4double offset);
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterlLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAxis,
const G4double width, const G4double half gap, const G4double offset);
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
G4LogicalVolume* pMotherLogical, const EAxis pAxis,
const G4int nDivisions, const G4double width,
const G4double half gap, const G4double offset);

Geant4 v9.4

Touchable

NATIONAL ACCELERATOR LABORATORY

Step point and touchable

As mentioned already, G4Step has two G4StepPoint objects as its starting and
ending points. All the geometrical information of the particular step should be
taken from “PreStepPoint”.

— Geometrical information associated with G4Track is identical to
“PostStepPoint”.

Each G4StepPoint object has

— Position in world coordinate system

— Global and local time

— Material

— G4TouchableHistory for geometrical information

G4TouchableHistory object is a vector of information for each geometrical
hierarchy.

— Ccopy number
— transformation / rotation to its mother

Since release 4.0, handles (or smart-pointers) to touchables are intrinsically
used. Touchables are reference counted.

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

Copy number

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

NATIONAL ACCELERATOR LABORATORY

Copy number

» Suppose a calorimeter is made of
4x5 cells.

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

NATIONAL ACCELERATOR LABORATORY

Copy number

» Suppose a calorimeter is made of
4x5 cells.

— and it is implemented by two
levels of replica.

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

Copy number

» Suppose a calorimeter is made of
4x5 cells.

— and it is implemented by two
levels of replica.

CopyNo =1

CopyNo = 2

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

Copy number

» Suppose a calorimeter is made of
4x5 cells.

— and it is implemented by two
levels of replica.

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

Copy number

» Suppose a calorimeter is made of
4x5 cells.

— and it is implemented by two
levels of replica.

* In reality, there is only one physical
volume object for each level. Its
position is parameterized by its
copy number.

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

Copy number

» Suppose a calorimeter is made of
4x5 cells.

— and it is implemented by two
levels of replica.

* In reality, there is only one physical
volume object for each level. Its
position is parameterized by its
copy number.

* To get the copy number of each
level, suppose what happens if a
step belongs to two cells.

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

Copy number

» Suppose a calorimeter is made of
4x5 cells.

— and it is implemented by two
levels of replica.

* In reality, there is only one physical
volume object for each level. Its
position is parameterized by its
copy number.

* To get the copy number of each
level, suppose what happens if a
step belongs to two cells.

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

Copy number

» Suppose a calorimeter is made of
4x5 cells.

— and it is implemented by two
levels of replica.

* In reality, there is only one physical
volume object for each level. Its
position is parameterized by its
copy number.

* To get the copy number of each
level, suppose what happens if a
step belongs to two cells.

Geometry II - J.Perl presenting slides by M.Asai (SLAC)

Copy number

» Suppose a calorimeter is made of
4x5 cells.

— and it is implemented by two
levels of replica.

* In reality, there is only one physical
volume object for each level. Its
position is parameterized by its
copy number.

* To get the copy number of each
level, suppose what happens if a
step belongs to two cells.

Copy number

» Suppose a calorimeter is made of
4x5 cells.

— and it is implemented by two
levels of replica.

* In reality, there is only one physical
volume object for each level. Its
position is parameterized by its
copy number.

* To get the copy number of each
level, suppose what happens if a
step belongs to two cells.

Remember geometrical information in G4Track is identical to
"PostStepPoint".

Copy number

» Suppose a calorimeter is made of
4x5 cells.

— and it is implemented by two
levels of replica.

* In reality, there is only one physical
volume object for each level. Its
position is parameterized by its
copy number.

* To get the copy number of each
level, suppose what happens if a
step belongs to two cells.

Remember geometrical information in G4Track is identical to
"PostStepPoint".

You cannot get the correct copy number for "PreStepPoint" if you directly
access to the physical volume.

Copy number

» Suppose a calorimeter is made of
4x5 cells.

— and it is implemented by two
levels of replica.

* In reality, there is only one physical
volume object for each level. Its
position is parameterized by its
copy number.

* To get the copy number of each
level, suppose what happens if a
step belongs to two cells.

Remember geometrical information in G4Track is identical to
"PostStepPoint".

You cannot get the correct copy number for "PreStepPoint" if you directly
access to the physical volume.

E Use touchable to get the proper copy number, transform matrix, etc. a

Touchable

« G4TouchableHistory has information of geometrical hierarchy of the point.
G4Step* aStep;
G4StepPoint* preStepPoint = aStep->GetPreStepPoint() ;
GATouchableHistory* theTouchable =
(GATouchableHistory*) (preStepPoint->GetTouchable()) ;

G4int copyNo = theTouchable->GetVolume () ->GetCopyNo () ;
G4int motherCopyNo

= theTouchable->GetVolume (1) ->GetCopyNo () ;
G4int grandMotherCopyNo

= theTouchable->GetVolume (2) ->GetCopyNo () ;
G4ThreeVector worldPos = preStepPoint->GetPosition() ;
G4ThreeVector localPos = theTouchable->GetHistory ()

->GetTopTransform() .TransformPoint (worldPos) ;

NATIONAL ACCELERATOR LABORATORY

